×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Improving data compression: innovations and future prospects

    The article is devoted to the application of modern methods of generative image compression using variational autoencoders and neural network architectures. Special attention is paid to the analysis of existing approaches to image generation and restoration, as well as a comparative assessment of compression quality in terms of visual perception and metric indicators. The aim of the study is to systematize deep image compression methods and identify the most effective solutions based on the variational Bayesian approach. The paper considers various architectures, including conditional autoencoders and hypernetwork models, as well as methods for evaluating the quality of the data obtained. The main research methods used were the analysis of scientific literature, a comparative experiment on the architectures of generative models and a computational estimation of compression based on metrics. The results of the study showed that the use of variational autoencoders in combination with recurrent and convolutional layers makes it possible to achieve high-quality image recovery with a significant reduction in data volume. The conclusion is made about the prospects of using conditional variational autoencoders in image compression tasks, especially in the presence of additional information (for example, metadata). The presented approaches can be useful for developing efficient systems for storing and transmitting visual data.

    Keywords: variational autoencoders, generative models, image compression, deep learning, neural network architectures, data recovery, conditional models

  • Liquid glass and aqueous solutions of silicates, as a promising basis for technological processes of new nanocomposite materials

    The properties of the water-soluble high-modulus silicate systems: based on alkali metal polysilicates called liquid glass and chain their transformation from lower to higher oligomers, with the subsequent formation of colloidal solutions - silica sol. The methods of preparation, properties and applications of water-soluble high-modulus silicate systems. The possibilities of their use as a binder and modifying agents for various nanostructured composite materials. The examples of promising areas of application of liquid glass and high modulus of aqueous solutions of silicates in construction and industry. In particular show the possibility of using liquid glass and aqueous solutions of silicates in the production of nanostructured silicate polymer. In space engineering for manufacturing water-destructed mandrels used in the manufacture of solid rocket motor casings and pressure vessels 'cocoon' of composite materials by winding. The application of the inorganic sol to obtain a nanocomposite ceramics and monolithic blocks of silicon oxide, which can be used in various fields of modern technology. The possibility of using silica sol as a binder for refractory ultra-lightweight shielding materials used to protect equipment from high impacts. The directions of development of the production of new acid-resistant materials and linings for protection of chemical equipment, parts and components operating in corrosive environments.

    Keywords: Keywords: water glass, silicate polymer concrete, additives, silicates organic bases tetrafurfuriloksisilan, furfural alcohol, nanostructure composite materials, water-soluble silicates, silica sol, sol-gel transition, cured xerogel water-destructed mandr