This article explores the introduction and implementation of neural network models in the field of agriculture, with an emphasis on their use in smart greenhouses. Smart greenhouses are innovative systems for controlling the microclimate and other factors affecting plant growth. Using neural networks trained on data on soil moisture, temperature, illumination and other parameters, it is possible to predict future indicators with high accuracy. The article discusses the stages of data collection and preparation, the learning process of neural networks, as well as the practical implementation of this approach. The results of the study highlight the prospects for the introduction of neural networks in the agricultural sector and their important role in optimizing plant growth processes and increasing the productivity of agricultural enterprises.
Keywords: neural network, predicting indicators, smart greenhouse, artificial intelligence, data modeling, microclimate