Measurement results of basic characteristics of electronic module based on two specialized analog integrated circuits depending on different square area silicon detectors using source of 239Pu alpha particles is given. Processing of current pulses typically consists to convert them into a voltage by charge sensitive amplifiers and reduce noise by bandpass filters. Earlier for work with avalanche photodiode we have developed, constructed and tested two electronic modules "CRP-MDL-1" and "CRP-MDL-2". During the measurements was investigated spectrometric channel response on exposure to ionizing radiation from a source of alpha particles 239Pu and test input signals, thus we determined basic technical characteristics including energy resolution and noise characteristics. As a result, research found, that the output signal has the following timings: rise time - 1 us (levels of 0.1-0.9), peak time - 1.4 us, fall time - 1.8 us pulse width - 3.5 us. The conversion factor of module working with silicon detector (area of 1000 mm2 and a capacity 500 pF) consists about 10.6 mV / fC, or 0.47 V / MeV. Integral nonlinearity of spectrometer path is not worse 0.4% in the range from about 0.1 to 3.2 V. The energy resolution was 89.1 keV line of 5157 keV. The experimental studies revealed that using an external low-noise transistors developed module can be used in the construction of standard radiometric paths. It is appropriate to use the developed design-circuit solutions for implementing 4-channel chip for multi-channel radiometric and spectrometric systems.
Keywords: silicon detector, charge sensitive amplifier, spectrometer, radiometric system, ionizing radiation