In this paper we study of the local atomic and electronic structure of nanostructured condensed material for rechargeable current sources on the basis of 15mas.%V2O5/Fe/LiF nanocomposite within charge-discharge cycle. Principle component analysis (PCA) of the series of Fe K-edge spectra collected during 1 st charge showing the concentrations of the components Fe, FeF2 and V[FeV]O4. We found the changes in the V oxidation state from the analysis of the experimental Fe K- and V K- XANES spectra. Total and partial density of states of components are presented.
Keywords: nanostructured materials for rechargeable current sources, dynamics of local atomic and electronic structures, XANES, DFT
In this paper we study the dynamics of the local atomic structure of new nanostructured condensed material for for rechargeable current sources on the basis of 15mas.%V2O5/Fe/LiF nanocomposite within charge-discharge cycle on the basis of X-ray diffraction (XRD), X-ray absorption spectroscopy (XANES) and of computer simulation. The analysis of the experimental data obtained during the first charge cycle reveals the transformation of iron to more than 50% of iron fluoride (II) , Li ions intercalate into the structure of amorphous V2O5 forming LiVO2 compound.
Keywords: diversification of management, production diversification, financial and economic purposes of a diversification, technological purposes of ensuring flexibility of production