×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Simulation of the design activity diversification of innovative enterprise

Abstract

Simulation of the design activity diversification of innovative enterprise

Sayenko A.V., Malyukov S.P., Bondarchuk D.A.

Incoming article date: 08.12.2016

Nanocrystalline TiO2 films are used as transparent layer n-type conductivity in the perovskite solar cells. The work presents the numerical diffusion-drift modeling of the transport processes and the accumulation of charge carriers in the heterostructure of TiO2 / perovskite / p-type semiconductor. The basis of the simulation put stationary physical and topological model based on drift-diffusion equations and semiconductor system allowing to model perovskite solar cells with a variety of electro-technological and constructive parameters. Obtained photovoltaic solar cell characteristics and plotted the efficiency of the TiO2 film thickness. The optimal thickness of the TiO2 film is 50-100 nm, thereby increasing the perovskite solar cell efficiency.

Keywords: Solar cell, thin film, titanium dioxide, p-i-n structure, numerical modeling