×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Magnetooptical Properties of 1D InSb-Based Structures with Impurity Centers and the Kane Dispersion Law

Abstract

Magnetooptical Properties of 1D InSb-Based Structures with Impurity Centers and the Kane Dispersion Law

Kalinin E.N., Kalinina A.V.

Incoming article date: 31.12.2021

A semiconductor quantum wire (QW) containing an impurity center described in the framework of a hydrogen-like model is considered. The possibility of using InSb QW in photodetectors of infrared optical radiation is discussed. The QW is modeled as a geometrically symmetric cylinder, on the axis of which an impurity center is located at an arbitrary point, with which the origin of the cylindrical coordinate system is associated, in which calculations are performed. It is assumed that the magnetic length is much smaller than the effective Bohr radius - the case of a strong magnetic field. This approximation made it possible to make the impurity potential effectively one-dimensional and obtain analytically accurate calculation results. In the effective mass approximation, in the dipole approximation, an expression is obtained for the matrix elements of the optical transitions of an electron from the impurity ground state to the size-quantized QW states for the case of transverse light polarization and the Kane dispersion law of charge carriers.

Keywords: matrix elements of optical transitions, effective mass method, quantum wire, dipole approximation, size-quantized states