
Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

Bidirectional Long Short-Term Memory Networks for Automated Source

Code Generation

F.D. Nyaga
National University of Science and Technology “MISiS” (Moscow)

Abstract: This paper examines the application of Bidirectional Long Short-Term Memory (Bi-
LSTM) networks in neural source code generation. The research analyses how Bi-LSTMs
process sequential data bidirectionally, capturing contextual information from both past and
future tokens to generate syntactically correct and semantically coherent code. A comprehensive
analysis of model architectures is presented, including embedding mechanisms, network
configurations, and output layers. The study details data preparation processes, focusing on
tokenization techniques that balance vocabulary size with domain-specific terminology handling.
Training methodologies, optimization algorithms, and evaluation metrics are discussed with
comparative results across multiple programming languages. Despite promising outcomes,
challenges remain in functional correctness and complex code structure generation. Future
research directions include attention mechanisms, innovative architectures, and advanced
training procedures.
Keywords: code generation, deep learning, recurrent neural networks, transformers,
tokenisation.

Introduction

Neural source code generation represents a paradigm shift in software

development, moving away from traditional rule-based programming towards data-

driven approaches that leverage the power of deep learning models to

automatically generate source code from various inputs, such as natural language

descriptions or abstract specifications [1, 2]. This emerging field holds immense

potential to revolutionise software engineering practices by automating repetitive

coding tasks, accelerating development cycles, and empowering individuals with

limited programming expertise to create software applications [2]. Among the

diverse range of deep learning architectures employed in neural source code

generation, Bidirectional Long Short-Term Memory (Bi-LSTM) networks have

emerged as a prominent and effective technique [3, 4].

Bidirectional long short-term memory networks are among the most popular

and powerful deep learning methods in neural source code generation. Bi-LSTMs

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

leverage their ability to handle bidirectional sequential data streams to generate

source code; this allows them to easily process the intricate dependencies and

contextual nuances found in programming languages [5].

Bi-LSTMs improve code structure comprehension by incorporating context

from both past and future tokens, as opposed to unidirectional LSTMs, which

incorporate only past context. This is especially crucial for ensuring the syntactic

correctness and semantic coherence of the generated code[5, 6]. Bi-LSTM-based

models are gaining popularity as demand for speedy and automated code

generation tools rises. They provide an appealing path for software development

process advancement and unlock new potential for both novice and professional

developers. Furthermore, deep learning innovations have given rise to code-

generation models capable of producing highly accurate source code from code-

based and natural language requests.

This paper presents an overview of bidirectional LSTM-based techniques for

automated source code generation, including their structures, training procedures,

and applications.

Background

Improved performance of large language models has significantly helped

natural language processing by bridging the gap between programming and natural

languages. AI-based code generation produces source code from natural language

descriptions, improving efficiency. Although early solutions relied on heuristic

rules and expert systems, recent breakthroughs in deep learning, such as recurrent

neural networks and transformers, have proven particularly beneficial in

addressing code production challenges [6].

Bi-LSTM Networks

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

Long Short-Term Memory (LSTM) networks are a variant of recurrent

neural network developed primarily to address the issue of vanishing gradients in

traditional RNNs during the handling of long sequences. They consist of memory

cells with input, forget, and output gates to regulate the flow of information. This

allows for the establishment of long-term interdependence through the

management of information intake, omitting of unnecessary information, and cell

state contribution to outputs [7].

Fig.1. - Bidirectional LSTM Architecture

Furthermore, the recurrence of LSTMs retains previous inputs as hidden

states, which is important for comprehending sequential context in tasks such as

source code generation and natural language analysis. Bidirectional LSTMs

improve the performance of standard LSTMs by capturing both forward and

backward input sequences. This is highly useful for applications that need to

provide context based on previous and future inputs (see Fig.1. for a visual

illustration).

Neural Source Code Generation

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

The capability of generating code from diverse inputs, such as formal

requirements, natural language descriptions, or existing code snippets, makes

neural source code generation a significant software development innovation.

Previous code generation techniques were based on hand-coded rules and

templates that were rigid and difficult to generalize across diverse programming

areas and application domains. Yet, the development of deep learning techniques

has changed this industry and resulted in models that are able to generate code with

greater accuracy and complexity [7 - 9].

Neural source code generation creates new and contextually relevant

fragments of code by leveraging neural networks' ability to understand the

complex links between input data and output code. These models can learn the

syntax, semantics, and stylistic guidelines of several programming languages

because they are trained on large code and documentation datasets [9, 10].

Translating natural language specifications into executable code has the

potential to democratise software development since it will enable users without

programming experience or knowledge to execute computational ideas and share

in the digital world, making the technological ecosystem more diverse and

inclusive [3, 22]. Neural code generation can also dramatically enhance developer

productivity by automating routine coding tasks and facilitating more creative and

strategic work, during the software development lifecycle [10].

Tokenization and Data Preparation

Adequate data preparation is critical when building Bi-LSTM-based models

because it has a substantial impact on model development and training capabilities.

Tokenisation is the initial stage of this approach, in which the source code is

broken down into discrete tokens. Tokens are the fundamental building elements of

code and can include operators, punctuation, keywords, and identifiers. Because it

accurately tokenises the code, the model can grasp and evaluate its underlying

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

structure and semantics, allowing it to perform better on tasks like code generation

and analysis [10 - 12].

Furthermore, techniques such as Subword tokenisation are employed to

achieve a balance between the model's ability to handle uncommon or unknown

words in source code—words with unusual naming patterns or that are domain-

specific—and vocabulary size. This improves the realism and consistency of

generated code by significantly increasing the model's ability to comprehend the

intricate technical aspects prevalent in various programming paradigms and coding

styles [9, 10].

After tokenising the source code, it is necessary to create a vocabulary in

which each token is assigned a fixed-sized embedded vector. Keywords and

semantically relevant elements should be expressed using similar vectors [13-16];

some systems train a token embedding first, followed by the neural network.

Bi-LSTM Model Architecture

The Bi-LSTM structure utilized for code generation typically comprises

three layers: an embedding layer, Bi-LSTM layers, and a dense output layer. The

embedding layer converts each token into a high-dimensional vector representation

containing semantic and syntactic information regarding the token; the embeddings

are passed into the Bi-LSTM layers. The layers process the input sequence in both

forward and backwards directions, gathering contextual information from tokens

that precede and follow each token and computing a hidden state representation for

each token in the sequence [17].

The Bi-LSTM structure utilized for code generation typically comprises the

hidden state representations that are sent into a dense output layer, which produces

a probability distribution over the multiple token vocabularies. Hyperparameters

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

with a significant impact on model performance include the number of Bi-LSTM

layers, learning rate, batch size, and hidden state dimension. Furthermore, tuning

them is essential for improving model performance. In addition, grid search and

random search are common methods for determining the optimal hyperparameter

configurations [17, 18].

Bi-LSTM models are extensively trained on large source code repositories

utilizing optimisation techniques to reduce disparities between the generated code

and the desired output. Throughout training, model parameters (weight and bias)

are constantly changed to improve context sensitivity and code generation

accuracy. Parameters are updated based on observations of the loss function

gradient for prediction-target differences. Adam, RMSprop optimisation, and

stochastic gradient descent are used to reduce loss. The Adam optimiser uses

gradient information to continually alter learning rates for each parameter [19].

To support thorough evaluation of a variety of programming languages, the

models are extensively tested on training data sets representing a variety of coding

styles, domains, and complexities, as well as a variety of programming languages

(C, C++, Java, and Python). Various metrics are used to evaluate performance: for

example, BLEU which uses n-gram to assess the similarity between reference and

output code [20 - 24].

Conclusion

This study examined the potential of Bi-LSTM networks to generate source

code, as well as the benefits and drawbacks of this technique. Despite the

encouraging results of these approaches, future research should focus on

improving functional correctness and handling complicated code structures.

Potential research paths include incorporating attention mechanisms, studying

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

innovative network designs, and developing increasingly sophisticated training

procedures.

Литература/References

1. Zhang X., et al. Context-aware code generation with synchronous

bidirectional decoder. Journal of Systems and Software. 2024. Vol. 214. P.

112066.

2. Li J., et al. Large language model-aware in-context learning for code

generation. ACM Transactions on Software Engineering and Methodology.

2023.

3. Wang Y., et al. Codet5: Identifier-aware unified pre-trained encoder-decoder

models for code understanding and generation. arXiv preprint

arXiv:2109.00859. 2021.

4. Svyatkovskiy A., et al. Intellicode compose: Code generation using

transformer. Proceedings of the 28th ACM joint meeting on European

software engineering conference and symposium on the foundations of

software engineering. 2020.

5. Chen M., et al. Evaluating large language models trained on code. arXiv

preprint arXiv:2107.03374. 2021.

6. Li Y., et al. Competition-level code generation with alphacode. Science.

2022. Vol. 378. No. 6624. Pp. 1092-1097.

7. Hellendoorn V. J., Devanbu P. Are deep neural networks the best choice for

modeling source code? Proceedings of the 2017 11th Joint meeting on

foundations of software engineering. 2017. Pp. 763-773.

8. Allamanis M., Brockschmidt M., Khademi M. Learning to represent

programs with graphs. arXiv preprint arXiv:1711.00740. 2017.

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

9. Alon U., et al. code2seq: Generating sequences from structured

representations of code. arXiv preprint arXiv:1808.01400. 2018.

10. Zhou Y., et al. Devign: Effective vulnerability identification by learning

comprehensive program semantics via graph neural networks. Advances in

neural information processing systems. 2019. Vol. 32.

11. Feng Z. et al. Codebert: A pre-trained model for programming and natural

languages. arXiv preprint arXiv:2002.08155. 2020.

12. Guo D., et al. Graphcodebert: Pre-training code representations with data

flow. arXiv preprint arXiv:2009.08366. 2020.

13. Zhang J., et al. Retrieval-based neural source code summarization.

Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering. 2020.

14. Vaswani A. et al. Attention is all you need. Advances in neural information

processing systems. 2017. Vol. 30.

15. Austin J., et al. Program synthesis with large language models. arXiv

preprint arXiv:2108.07732. 2021.

16. Roziere B., et al. Code llama: Open foundation models for code. arXiv

preprint arXiv:2308.12950. 2023.

17. Zhou S., et al. Docprompting: Generating code by retrieving the docs. arXiv

preprint arXiv: 2207.05987. 2022.

18. Dong Y., et al. Self-collaboration code generation via chatgpt. ACM

Transactions on Software Engineering and Methodology. 2024. Vol. 33. No.

7. Pp. 1-38.

19. Li R. et al. Starcoder: may the source be with you! arXiv preprint

arXiv:2305.06161. 2023.

20. Nath P., et al. AI and Blockchain-based source code vulnerability detection

and prevention system for multiparty software development. Computers and

Electrical Engineering. 2023. Vol. 106. P. 108607.

Инженерный вестник Дона, №6 (2025)
ivdon.ru/ru/magazine/archive/n6y2025/10147

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025

21. Li J., et al. Skcoder: A sketch-based approach for automatic code generation.

2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE). IEEE, 2023.

22. KC D., Morrison C. T. Neural machine translation for code generation.

arXiv preprint arXiv:2305.13504. 2023.

23. Pradel M., Chandra S. Neural software analysis. Communications of the

ACM. 2021. Vol. 65. No. 1. Pp. 86-96.

24. Van Houdt G., Mosquera C., Nápoles G. A review on the long short-term

memory model. Artificial Intelligence Review. 2020. Vol. 53. No. 8. Pp.

5929-5955.

Дата поступления: 8.04.2025

Дата публикации: 25.05.2025

	Bidirectional Long Short-Term Memory Networks for Automated Source Code Generation
	Background
	Improved performance of large language models has significantly helped natural language processing by bridging the gap between programming and natural languages. AI-based code generation produces source code from natural language descriptions, improvi...
	Bi-LSTM Networks
	Long Short-Term Memory (LSTM) networks are a variant of recurrent neural network developed primarily to address the issue of vanishing gradients in traditional RNNs during the handling of long sequences. They consist of memory cells with input, forget...
	Fig.1. - Bidirectional LSTM Architecture
	Furthermore, the recurrence of LSTMs retains previous inputs as hidden states, which is important for comprehending sequential context in tasks such as source code generation and natural language analysis. Bidirectional LSTMs improve the performance o...
	Neural Source Code Generation
	Tokenization and Data Preparation
	Adequate data preparation is critical when building Bi-LSTM-based models because it has a substantial impact on model development and training capabilities. Tokenisation is the initial stage of this approach, in which the source code is broken down i...
	Furthermore, techniques such as Subword tokenisation are employed to achieve a balance between the model's ability to handle uncommon or unknown words in source code—words with unusual naming patterns or that are domain-specific—and vocabulary size. T...
	After tokenising the source code, it is necessary to create a vocabulary in which each token is assigned a fixed-sized embedded vector. Keywords and semantically relevant elements should be expressed using similar vectors [13-16]; some systems train a...
	Bi-LSTM Model Architecture
	The Bi-LSTM structure utilized for code generation typically comprises three layers: an embedding layer, Bi-LSTM layers, and a dense output layer. The embedding layer converts each token into a high-dimensional vector representation containing semanti...
	The Bi-LSTM structure utilized for code generation typically comprises the hidden state representations that are sent into a dense output layer, which produces a probability distribution over the multiple token vocabularies. Hyperparameters with a si...
	Bi-LSTM models are extensively trained on large source code repositories utilizing optimisation techniques to reduce disparities between the generated code and the desired output. Throughout training, model parameters (weight and bias) are constantl...
	To support thorough evaluation of a variety of programming languages, the models are extensively tested on training data sets representing a variety of coding styles, domains, and complexities, as well as a variety of programming languages (C, C++, Ja...
	Conclusion

