Simulation modeling of calculation of transient response using Duhamel integral
Abstract
Simulation modeling of calculation of transient response using Duhamel integral
Incoming article date: 24.09.2024A Simulink model is considered that allows calculating transient processes of objects described using a transient function for any type of input action. An algorithm for the operation of the S-function that performs calculations using the Duhamel integral is described. It is shown that due to the features of the S-function, it can store the values of the previous step of the Simulink model calculation. This allows the input signal to be decomposed into step components and the time of occurrence of each step and its value to be stored. For each step of the input signal increment, the S-function calculates the response by scaling the transient response. Then, at each step of the calculation, the sum of such reactions is found. The S-function provides a procedure for freeing memory when the end point of the transient response is reached at each step. Thus, the amount of memory required for the calculation does not increase above a certain limit, and, in general, does not depend on the length of the model time. For calculations, the S-function uses matrix operations and does not use cycles. Due to this, the speed of model calculation is quite high. The article presents the results of calculations. Recommendations are given for setting the parameters of the model. A conclusion is formulated on the possibility of using the model for calculating dynamic modes.
Keywords: simulation modeling, Simulink, step response, step function, S-function, Duhamel integral.